Affiliation:
1. University of Illinois at Urbana-Champaign
Abstract
As the size of high performance clusters multiplies, the probability of system failure grows substantially, posing an increasingly significant challenge for scalability. Checkpoint-based fault tolerance methods are effective approaches at dealing with faults. With these methods, the state of the entire parallel application is checkpointed to reliable storage. When a fault occurs, the application is restarted from a recent checkpoint. However, the application developer is required to write significant additional code for checkpointing and restarting. This paper describes disk-based and memory-based checkpointing fault tolerance schemes that automate the task of checkpointing and restarting. The schemes also allow the program to be restarted on a different number of processors. These schemes are based on self-checkpointable, migratable objects supported by the Adaptive MPI (AMPI) and Charm++ run-time and can be applied to a wide class of applications written using MPI or message-driven languages. We demonstrate the effectiveness of the strategies and evaluate their performance.
Publisher
Association for Computing Machinery (ACM)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献