Modeling and analyzing evaluation cost of CUDA kernels

Author:

Muller Stefan K.1,Hoffmann Jan2

Affiliation:

1. Illinois Institute of Technology, USA

2. Carnegie Mellon University, USA

Abstract

General-purpose programming on GPUs (GPGPU) is becoming increasingly in vogue as applications such as machine learning and scientific computing demand high throughput in vector-parallel applications. NVIDIA's CUDA toolkit seeks to make GPGPU programming accessible by allowing programmers to write GPU functions, called kernels, in a small extension of C/C++. However, due to CUDA's complex execution model, the performance characteristics of CUDA kernels are difficult to predict, especially for novice programmers. This paper introduces a novel quantitative program logic for CUDA kernels, which allows programmers to reason about both functional correctness and resource usage of CUDA kernels, paying particular attention to a set of common but CUDA-specific performance bottlenecks. The logic is proved sound with respect to a novel operational cost semantics for CUDA kernels. The semantics, logic and soundness proofs are formalized in Coq. An inference algorithm based on LP solving automatically synthesizes symbolic resource bounds by generating derivations in the logic. This algorithm is the basis of RaCuda, an end-to-end resource-analysis tool for kernels, which has been implemented using an existing resource-analysis tool for imperative programs. An experimental evaluation on a suite of CUDA benchmarks shows that the analysis is effective in aiding the detection of performance bugs in CUDA kernels.

Funder

Defense Advanced Research Projects Agency

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. (De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms;ACM Transactions on Programming Languages and Systems;2024-05-22

2. TrackFM: Far-out Compiler Support for a Far Memory World;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1;2024-04-17

3. Modeling and Analyzing Evaluation Cost of CUDA Kernels;ACM Transactions on Parallel Computing;2024-03-12

4. Automatic Static Analysis-Guided Optimization of CUDA Kernels;Proceedings of the 15th International Workshop on Programming Models and Applications for Multicores and Manycores;2024-03-03

5. Systematic Literature Review on Machine Learning and its Impact on APIs Deployment;Computación y Sistemas;2023-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3