Affiliation:
1. Arizona State University, Tempe, AZ
2. NEC Laboratories America, Cupertino, CA
3. YAHOO! Inc., Santa Clara, CA
Abstract
We discover communities from social network data and analyze the community evolution. These communities are inherent characteristics of human interaction in online social networks, as well as paper citation networks. Also, communities may evolve over time, due to changes to individuals' roles and social status in the network as well as changes to individuals' research interests. We present an innovative algorithm that deviates from the traditional two-step approach to analyze community evolutions. In the traditional approach, communities are first detected for each time slice, and then compared to determine correspondences. We argue that this approach is inappropriate in applications with noisy data. In this paper, we propose
FacetNet
for analyzing communities and their evolutions through a robust
unified
process. This novel framework will discover communities and capture their evolution with temporal smoothness given by historic community structures. Our approach relies on formulating the problem in terms of maximum a posteriori (MAP) estimation, where the community structure is estimated both by the observed networked data and by the prior distribution given by historic community structures. Then we develop an iterative algorithm, with proven low time complexity, which is guaranteed to converge to an optimal solution. We perform extensive experimental studies, on both synthetic datasets and real datasets, to demonstrate that our method discovers meaningful communities and provides additional insights not directly obtainable from traditional methods.
Publisher
Association for Computing Machinery (ACM)
Cited by
215 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献