On Exponential-time Hypotheses, Derandomization, and Circuit Lower Bounds

Author:

Chen Lijie1ORCID,Rothblum Ron D.2ORCID,Tell Roei3ORCID,Yogev Eylon4ORCID

Affiliation:

1. Miller Institute for Basic Research in Science at University of California, Berkeley, USA

2. Technion, Israel

3. Institute for Advanced Study and DIMACS, USA

4. Bar-Ilan University, Israel

Abstract

The Exponential-Time Hypothesis (ETH) is a strengthening of the 𝒫 ≠ 𝒩𝒫 conjecture, stating that 3- SAT on n variables cannot be solved in (uniform) time 2 εċ n , for some ε > 0. In recent years, analogous hypotheses that are “exponentially strong” forms of other classical complexity conjectures (such as 𝒩𝒫⊈ ℬ𝒫𝒫 or co 𝒩𝒫⊈𝒩𝒫) have also been introduced and have become widely influential. In this work, we focus on the interaction of exponential-time hypotheses with the fundamental and closely related questions of derandomization and circuit lower bounds . We show that even relatively mild variants of exponential-time hypotheses have far-reaching implications to derandomization, circuit lower bounds, and the connections between the two. Specifically, we prove that: (1) The Randomized Exponential-Time Hypothesis (rETH) implies that ℬ𝒫𝒫 can be simulated on “average-case” in deterministic (nearly-)polynomial-time (i.e., in time 2 Õ(log( n )) = n loglog( n ) O(1) ). The derandomization relies on a conditional construction of a pseudorandom generator with near-exponential stretch (i.e., with seed length Õ(log ( n ))); this significantly improves the state-of-the-art in uniform “hardness-to-randomness” results, which previously only yielded pseudorandom generators with sub-exponential stretch from such hypotheses. (2) The Non-Deterministic Exponential-Time Hypothesis (NETH) implies that derandomization of ℬ𝒫𝒫 is completely equivalent to circuit lower bounds against ℰ, and in particular that pseudorandom generators are necessary for derandomization. In fact, we show that the foregoing equivalence follows from a very weak version of NETH, and we also show that this very weak version is necessary to prove a slightly stronger conclusion that we deduce from it. Last, we show that disproving certain exponential-time hypotheses requires proving breakthrough circuit lower bounds. In particular, if CircuitSAT for circuits over n bits of size poly(n) can be solved by probabilistic algorithms in time 2 n /polylog(n) , then ℬ𝒫ℰ does not have circuits of quasilinear size.

Funder

NSF

Google Faculty Research Award, an IBM Fellowship, and a Miller Research Fellowship

Israeli Science Foundation

Technion Hiroshi Fujiwara cyber center, and by the European Union

European Union’s Horizon 2020 research and innovation programme

National Science Foundation

the Israel Science Foundation

BIU Center for Research in Applied Cryptography and Cyber Security

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3