Bones

Author:

Nugteren Cedric1,Corporaal Henk1

Affiliation:

1. Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

The shift toward parallel processor architectures has made programming and code generation increasingly challenging. To address this programmability challenge, this article presents a technique to fully automatically generate efficient and readable code for parallel processors (with a focus on GPUs). This is made possible by combining algorithmic skeletons, traditional compilation, and “ algorithmic species ,” a classification of program code. Compilation starts by automatically annotating C code with class information (the algorithmic species). This code is then fed into the skeleton-based source-to-source compiler bones to generate CUDA code. To generate efficient code, bones also performs optimizations including host-accelerator transfer optimization and kernel fusion. This results in a unique approach, integrating a skeleton-based compiler for the first time into an automated flow. The benefits are demonstrated experimentally for PolyBench GPU kernels, showing geometric mean speed-ups of 1.4× and 2.4× compared to ppcg and Par4All , and for five Rodinia GPU benchmarks, showing a gap of only 1.2× compared to hand-optimized code.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference30 articles.

1. Marco Aldinucci Marco Danelutto Peter Kilpatrick and Massimo Torquati. 2013. FastFlow: High-level and efficient streaming on multi-core. Programming Multi-core and Many-core Computing Systems 13 (January 2013). Wiley. Marco Aldinucci Marco Danelutto Peter Kilpatrick and Massimo Torquati. 2013. FastFlow: High-level and efficient streaming on multi-core. Programming Multi-core and Many-core Computing Systems 13 (January 2013). Wiley.

2. Automatic C-to-CUDA Code Generation for Affine Programs

3. A practical automatic polyhedral parallelizer and locality optimizer

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simplified High Level Parallelism Expression on Heterogeneous Systems through Data Partition Pattern Description;The Computer Journal;2022-03-14

2. Automatic translation of data parallel programs for heterogeneous parallelism through OpenMP offloading;The Journal of Supercomputing;2020-10-29

3. Skeleton-Based Synthesis Flow for Computation-in-Memory Architectures;IEEE Transactions on Emerging Topics in Computing;2020-04-01

4. Parallelization Of Object-oriented Machine Vision Algorithms For Embedded GPUs;2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin);2019-09-08

5. Efficient hierarchical online-autotuning;Proceedings of the ACM International Conference on Supercomputing;2019-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3