Assessing the Quality of Sources in Wikidata Across Languages: A Hybrid Approach

Author:

Amaral Gabriel1ORCID,Piscopo Alessandro2ORCID,Kaffee Lucie-aimée3ORCID,Rodrigues Odinaldo1,Simperl Elena1

Affiliation:

1. King's College London, London, United Kingdom

2. BBC, London, United Kingdom

3. University of Southampton, Southampton, United Kingdom

Abstract

Wikidata is one of the most important sources of structured data on the web, built by a worldwide community of volunteers. As a secondary source, its contents must be backed by credible references; this is particularly important, as Wikidata explicitly encourages editors to add claims for which there is no broad consensus, as long as they are corroborated by references. Nevertheless, despite this essential link between content and references, Wikidata's ability to systematically assess and assure the quality of its references remains limited. To this end, we carry out a mixed-methods study to determine the relevance, ease of access, and authoritativeness of Wikidata references, at scale and in different languages, using online crowdsourcing, descriptive statistics, and machine learning. Building on previous work of ours, we run a series of microtasks experiments to evaluate a large corpus of references, sampled from Wikidata triples with labels in several languages. We use a consolidated, curated version of the crowdsourced assessments to train several machine learning models to scale up the analysis to the whole of Wikidata. The findings help us ascertain the quality of references in Wikidata and identify common challenges in defining and capturing the quality of user-generated multilingual structured data on the web. We also discuss ongoing editorial practices, which could encourage the use of higher-quality references in a more immediate way. All data and code used in the study are available on GitHub for feedback and further improvement and deployment by the research community.

Funder

European Union's Horizon 2020

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems and Management,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3