Solids on Soli

Author:

Čopič Pucihar Klen1,Attygalle Nuwan T.1,Kljun Matjaz1,Sandor Christian2,Leiva Luis A.3

Affiliation:

1. University of Primorska, Koper, Slovenia

2. Université Paris-Saclay/CNRS, Orsay, France

3. University of Luxembourg, Esch-sur-Alzette, Luxembourg

Abstract

Gesture recognition with miniaturised radar sensors has received increasing attention as a novel interaction medium. The practical use of radar technology, however, often requires sensing through materials. Yet, it is still not well understood how the internal structure of materials impacts recognition performance. To tackle this challenge, we collected a large dataset of 14,090 radar recordings for 6 paradigmatic gesture classes sensed through a variety of everyday materials, performed by humans (6 materials) and a robot system (75 materials). Next, we developed a hybrid CNN+LSTM deep learning model and derived a robust indirect method to measure signal distortions, which we used to compile a comprehensive catalogue of materials for radar-based interaction. Among other findings, our experiments show that it is possible to estimate how different materials would affect gesture recognition performance of arbitrary classifiers by selecting just 3 reference materials. Our catalogue, software, models, data collection platform, and labeled datasets are publicly available.

Funder

European Commission, InnoRenew CoE project

Horizon 2020 FET, ERA-NET Cofund

ARRS

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Human-Computer Interaction,Social Sciences (miscellaneous)

Reference69 articles.

1. Fadel Adib , Chen-Yu Hsu , Hongzi Mao , Dina Katabi , and Frédo Durand . 2015. Capturing the Human Figure through a Wall. ACM TOG 34, 6 ( 2015 ). Fadel Adib, Chen-Yu Hsu, Hongzi Mao, Dina Katabi, and Frédo Durand. 2015. Capturing the Human Figure through a Wall. ACM TOG 34, 6 (2015).

2. Fadel Adib , Zach Kabelac , Dina Katabi , and Robert C Miller . 2014 . 3D tracking via body radio reflections . In Proc. NSDI. 317--329 . Fadel Adib, Zach Kabelac, Dina Katabi, and Robert C Miller. 2014. 3D tracking via body radio reflections. In Proc. NSDI. 317--329.

3. Agilent 1997. Understanding the Fundamental Principles of Vector Network Analysis. Agilent AN 1287--1. Agilent 1997. Understanding the Fundamental Principles of Vector Network Analysis. Agilent AN 1287--1.

4. Exploring Non-touchscreen Gestures for Smartwatches

5. Francisco Bernardo , Nicholas Arner , and Paul Batchelor . 2017 . O soli mio: exploring millimeter wave radar for musical interaction . In Proc. NIME. 283--286 . Francisco Bernardo, Nicholas Arner, and Paul Batchelor. 2017. O soli mio: exploring millimeter wave radar for musical interaction. In Proc. NIME. 283--286.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3