1. 2014. PyCryptodome. https://pypi.org/project/pycryptodome/. Accessed: 2023-05-10. 2014. PyCryptodome. https://pypi.org/project/pycryptodome/. Accessed: 2023-05-10.
2. Martín Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , 2016 . {TensorFlow}: A System for {Large-Scale} Machine Learning . In 12th USENIX symposium on operating systems design and implementation (OSDI 16) . 265--283. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. {TensorFlow}: A System for {Large-Scale} Machine Learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16). 265--283.
3. Dan Alistarh , Demjan Grubic , Jerry Li , Ryota Tomioka , and Milan Vojnovic . 2017 . QSGD: Communication-efficient SGD via gradient quantization and encoding. Advances in neural information processing systems 30 (2017). Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017. QSGD: Communication-efficient SGD via gradient quantization and encoding. Advances in neural information processing systems 30 (2017).
4. Dan Alistarh , Torsten Hoefler , Mikael Johansson , Nikola Konstantinov , Sarit Khirirat , and Cédric Renggli . 2018. The convergence of sparsified gradient methods. Advances in Neural Information Processing Systems 31 ( 2018 ). Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric Renggli. 2018. The convergence of sparsified gradient methods. Advances in Neural Information Processing Systems 31 (2018).
5. Privacy-preserving deep learning via additively homomorphic encryption;Aono Yoshinori;IEEE Transactions on Information Forensics and Security,2017