High-Utility Itemset Mining with Effective Pruning Strategies

Author:

Wu Jimmy Ming-Tai1,Lin Jerry Chun-Wei2,Tamrakar Ashish3

Affiliation:

1. Shandong University of Science and Technology, Shandong, China

2. Western Norway University of Applied Sciences, Bergen, Norway

3. University of Nevada, Las Vegas, NV

Abstract

High-utility itemset mining is a popular data mining problem that considers utility factors, such as quantity and unit profit of items besides frequency measure from the transactional database. It helps to find the most valuable and profitable products/items that are difficult to track by using only the frequent itemsets. An item might have a high-profit value which is rare in the transactional database and has a tremendous importance. While there are many existing algorithms to find high-utility itemsets (HUIs) that generate comparatively large candidate sets, our main focus is on significantly reducing the computation time with the introduction of new pruning strategies. The designed pruning strategies help to reduce the visitation of unnecessary nodes in the search space, which reduces the time required by the algorithm. In this article, two new stricter upper bounds are designed to reduce the computation time by refraining from visiting unnecessary nodes of an itemset. Thus, the search space of the potential HUIs can be greatly reduced, and the mining procedure of the execution time can be improved. The proposed strategies can also significantly minimize the transaction database generated on each node. Experimental results showed that the designed algorithm with two pruning strategies outperform the state-of-the-art algorithms for mining the required HUIs in terms of runtime and number of revised candidates. The memory usage of the designed algorithm also outperforms the state-of-the-art approach. Moreover, a multi-thread concept is also discussed to further handle the problem of big datasets.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3