Algorithms for Efficiently Computing Structural Anonymity in Complex Networks

Author:

de Jong Rachel G.1,van der Loo Mark P. J.1,Takes Frank W.2

Affiliation:

1. Leiden University, Statistics Netherlands, The Netherlands

2. Leiden University, The Netherlands

Abstract

This article proposes methods for efficiently computing the anonymity of entities in networks. We do so by partitioning nodes into equivalence classes where a node is k -anonymous if it is equivalent to k -1 other nodes. This assessment of anonymity is crucial when one wants to share data and must ensure the anonymity of entities represented is compliant with privacy laws. Additionally, in such an assessment, it is necessary to account for a realistic amount of information in the hands of a possible attacker that attempts to de-anonymize entities in the network. However, measures introduced in earlier work often assume a fixed amount of attacker knowledge. Therefore, in this work, we use a new parameterized measure for anonymity called d - k -anonymity. This measure can be used to model the scenario where an attacker has perfect knowledge of a node’s surroundings up to a given distance d . This poses nontrivial computational challenges, as naive approaches would employ large numbers of possibly computationally expensive graph isomorphism checks. This article proposes novel algorithms that severely reduce this computational burden. In particular, we present an iterative approach, assisted by techniques for preprocessing nodes that are trivially automorphic and heuristics that exploit graph invariants. We evaluate our algorithms on three well-known graph models and a wide range of empirical network datasets. Results show that our approaches significantly speed up the computation by multiple orders of magnitude, which allows one to compute d - k -anonymity for a range of meaningful values of d on large empirical networks with tens of thousands of nodes and over a million edges.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3