An Empirical Study of Moment Estimators for Quantile Approximation

Author:

Mitchell Rory1,Frank Eibe2,Holmes Geoffrey2

Affiliation:

1. Nvidia and University of Waikato, Hamilton, New Zealand

2. University of Waikato, Hamilton, New Zealand

Abstract

We empirically evaluate lightweight moment estimators for the single-pass quantile approximation problem, including maximum entropy methods and orthogonal series with Fourier, Cosine, Legendre, Chebyshev and Hermite basis functions. We show how to apply stable summation formulas to offset numerical precision issues for higher-order moments, leading to reliable single-pass moment estimators up to order 15. Additionally, we provide an algorithm for GPU-accelerated quantile approximation based on parallel tree reduction. Experiments evaluate the accuracy and runtime of moment estimators against the state-of-the-art KLL quantile estimator on 14,072 real-world datasets drawn from the OpenML database. Our analysis highlights the effectiveness of variants of moment-based quantile approximation for highly space efficient summaries: their average performance using as few as five sample moments can approach the performance of a KLL sketch containing 500 elements. Experiments also illustrate the difficulty of applying the method reliably and showcases which moment-based approximations can be expected to fail or perform poorly.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference31 articles.

1. Bernd Bischl Giuseppe Casalicchio Matthias Feurer Frank Hutter Michel Lang Rafael G. Mantovani Jan N. van Rijn and Joaquin Vanschoren. 2017. OpenML Benchmarking Suites. arxiv:stat.ML/1708.03731 Bernd Bischl Giuseppe Casalicchio Matthias Feurer Frank Hutter Michel Lang Rafael G. Mantovani Jan N. van Rijn and Joaquin Vanschoren. 2017. OpenML Benchmarking Suites. arxiv:stat.ML/1708.03731

2. Time bounds for selection

3. Estimation of an unknown distribution density from observations;Cencov Nikolai N.;Soviet Mathematics,1962

4. Algorithms for Computing the Sample Variance: Analysis and Recommendations

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3