Affiliation:
1. Caltech
2. Universidad ORT Uruguay, Uruguay
Abstract
Many modern schedulers can dynamically adjust their service capacity to match the incoming workload. At the same time, however, variability in service capacity often incurs operational and infrastructure costs. In this paper, we propose distributed algorithms that minimize service capacity variability when scheduling jobs with deadlines. Specifically, we show that Exact Scheduling minimizes service capacity variance subject to strict demand and deadline requirements under stationary Poisson arrivals. We also characterize the optimal distributed policies for more general settings with soft demand requirements, soft deadline requirements, or both. Additionally, we show how close the performance of the optimal distributed policy is to that of the optimal centralized policy by deriving a competitive-ratio-like bound.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reputation-Based Fair Power Allocation to Plug-in Electric Vehicles in the Smart Grid;2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS);2020-04