Delay Asymptotics and Bounds for Multi-Task Parallel Jobs

Author:

Wang Weina1,Harchol-Balter Mor2,Jiang Haotian3,Scheller-Wolf Alan2,Srikant R.1

Affiliation:

1. University of Illinois at Urbana-Champaign, Urbana, IL, USA

2. Carnegie Mellon University, Pittsburgh, PA, USA

3. Tsinghua University, Beijing, China

Abstract

We study delay of jobs that consist of multiple parallel tasks, which is a critical performance metric in a wide range of applications such as data file retrieval in coded storage systems and parallel computing. In this problem, each job is completed only when all of its tasks are completed, so the delay of a job is the maximum of the delays of its tasks. Despite the wide attention this problem has received, tight analysis is still largely unknown since analyzing job delay requires characterizing the complicated correlation among task delays, which is hard to do. We first consider an asymptotic regime where the number of servers, n, goes to infinity, and the number of tasks in a job, k(n), is allowed to increase with n. We establish the asymptotic independence of any k(n) queues under the condition k(n) = o(n1/4). This greatly generalizes the asymptotic-independence type of results in the literature where asymptotic independence is shown only for a fixed constant number of queues. As a consequence of our independence result, the job delay converges to the maximum of independent task delays. We next consider the non-asymptotic regime. Here we prove that independence yields a stochastic upper bound on job delay for any n and any k(n) with k(n)≤n. The key component of our proof is a new technique we develop, called "Poisson oversampling". Our approach converts the job delay problem into a corresponding balls-and-bins problem. However, in contrast with typical balls-and-bins problems where there is a negative correlation among bins, we prove that our variant exhibits positive correlation. A full version of this paper will all proofs appears in [28].

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance characteristics of the fork-join queuing system;Informatics;2023-09-29

2. The Delay Time Profile of Multistage Networks with Synchronization;Mathematics;2023-07-23

3. Modeling and analysis of distributed schedulers in data center cluster networks;Cluster Computing;2021-06-17

4. Tail Latency in Datacenter Networks;Modelling, Analysis, and Simulation of Computer and Telecommunication Systems;2021

5. Delay-optimal Policies in Partial Fork-Join Systems with Redundancy and Random Slowdowns;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2020-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3