Compositional Machine Transliteration

Author:

Kumaran A.1,Khapra Mitesh M.2,Bhattacharyya Pushpak2

Affiliation:

1. Microsoft Research India

2. Indian Institute of Technology Bombay

Abstract

Machine transliteration is an important problem in an increasingly multilingual world, as it plays a critical role in many downstream applications, such as machine translation or crosslingual information retrieval systems. In this article, we propose compositional machine transliteration systems, where multiple transliteration components may be composed either to improve existing transliteration quality, or to enable transliteration functionality between languages even when no direct parallel names corpora exist between them. Specifically, we propose two distinct forms of composition: serial and parallel. Serial compositional system chains individual transliteration components, say, X → Y and Y → Z systems, to provide transliteration functionality, X → Z. In parallel composition evidence from multiple transliteration paths between X → Z are aggregated for improving the quality of a direct system. We demonstrate the functionality and performance benefits of the compositional methodology using a state-of-the-art machine transliteration framework in English and a set of Indian languages, namely, Hindi, Marathi, and Kannada. Finally, we underscore the utility and practicality of our compositional approach by showing that a CLIR system integrated with compositional transliteration systems performs consistently on par with, and sometimes better than, that integrated with a direct transliteration system.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Different Models of Transliteration - A Comprehensive Review;2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA);2023-03-14

2. Study of machine transliteration for cross language retrieval;MACHINE LEARNING AND INFORMATION PROCESSING: PROCEEDINGS OF ICMLIP 2023;2023

3. Hindi title generation using rule-based approach;APPLIED DATA SCIENCE AND SMART SYSTEMS;2023

4. A Bilingual Machine Transliteration System for Sanskrit-English Using Rule-Based Approach;2022 4th International Conference on Artificial Intelligence and Speech Technology (AIST);2022-12-09

5. A Review on Transliterated Text Retrieval for Indian Languages;Proceedings of International Conference on Computational Intelligence;2022-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3