Incentive Mechanism Design for Crowdsourcing

Author:

Luo Tie1ORCID,Das Sajal K.2,Tan Hwee Pink3,Xia Lirong4

Affiliation:

1. Institute for Infocomm Research, A*STAR, Singapore

2. Missouri University of Science and Technology, Rolla, MO

3. Singapore Management University, Singapore

4. Rensselaer Polytechnic Institute, Troy, NY

Abstract

Crowdsourcing can be modeled as a principal-agent problem in which the principal (crowdsourcer) desires to solicit a maximal contribution from a group of agents (participants) while agents are only motivated to act according to their own respective advantages. To reconcile this tension, we propose an all-pay auction approach to incentivize agents to act in the principal’s interest, i.e., maximizing profit, while allowing agents to reap strictly positive utility. Our rationale for advocating all-pay auctions is based on two merits that we identify, namely all-pay auctions (i) compress the common, two-stage “bid-contribute” crowdsourcing process into a single “bid-cum-contribute” stage, and (ii) eliminate the risk of task nonfulfillment. In our proposed approach, we enhance all-pay auctions with two additional features: an adaptive prize and a general crowdsourcing environment. The prize or reward adapts itself as per a function of the unknown winning agent’s contribution, and the environment or setting generally accommodates incomplete and asymmetric information, risk-averse (and risk-neutral) agents, and a stochastic (and deterministic) population. We analytically derive this all-pay auction-based mechanism and extensively evaluate it in comparison to classic and optimized mechanisms. The results demonstrate that our proposed approach remarkably outperforms its counterparts in terms of the principal’s profit, agent’s utility, and social welfare.

Funder

U.S. National Science Foundation

A*STAR Singapore under SERC

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic payment on microtasking platforms using bee colony optimization;Expert Systems with Applications;2024-12

2. Contest partitioning in binary contests;Autonomous Agents and Multi-Agent Systems;2024-02-27

3. Tractable Binary Contests;ACM Transactions on Economics and Computation;2023-10-26

4. A truthful mechanism for time-bound tasks in IoT-based crowdsourcing with zero budget;Multimedia Tools and Applications;2023-06-27

5. IMRSG: Incentive Mechanism Based on Rubinstein-Starr Game for Mobile CrowdSensing;IEEE Transactions on Vehicular Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3