Static Analysis Techniques for Semiautomatic Synthesis of Message Passing Software Skeletons

Author:

Sottile Matthew1,Dagit Jason1,Zhang Deli2,Hendry Gilbert3,Dechev Damian4

Affiliation:

1. Research and Engineering, Galois, Inc., Portland, OR

2. University of Central Florida, Orlando, FL

3. Sandia National Laboratories, Livermore, CA

4. Sandia National Laboratories, University of Central Florida, Orlando, FL

Abstract

The design of high-performance computing architectures requires performance analysis of large-scale parallel applications to derive various parameters concerning hardware design and software development. The process of performance analysis and benchmarking an application can be done in several ways with varying degrees of fidelity. One of the most cost-effective ways is to do a coarse-grained study of large-scale parallel applications through the use of program skeletons. The concept of a “program skeleton” that we discuss in this article is an abstracted program that is derived from a larger program where source code that is determined to be irrelevant is removed for the purposes of the skeleton. In this work, we develop a semiautomatic approach for extracting program skeletons based on compiler program analysis. We demonstrate correctness of our skeleton extraction process by comparing details from communication traces, as well as show the performance speedup of using skeletons by running simulations in the SST/macro simulator.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modelling and Simulation

Reference22 articles.

1. POEMS: end-to-end performance design of large parallel adaptive computational systems

2. Compiler-Optimized Simulation of Large-Scale Applications on High Performance Architectures

3. The NAS parallel benchmarks---summary and preliminary results

4. Keith Cooper and Linda Torczon. 2003. Engineering a Compiler. Morgan Kaufmann. Keith Cooper and Linda Torczon. 2003. Engineering a Compiler. Morgan Kaufmann.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3