A Comprehensive Model for Efficient Design Space Exploration of Imprecise Computational Blocks

Author:

Javadi Mohammad Haji Seyed1,Faryabi Mohsen2,Mahdiani Hamid Reza2

Affiliation:

1. Department of Electrical Engineering, Shahid Beheshti University, Iran

2. Department of Computer Science and Engineering, Shahid Beheshti University, Iran

Abstract

After almost a decade of research, development of more efficient imprecise computational blocks is still a major concern in imprecise computing domain. There are many instances of the introduced imprecise components of different types, while their main difference is that they propose different precision-cost-performance trade-offs. In this paper, a novel comprehensive model for the imprecise components is introduced, which can be exploited to cover a wide range of precision-cost-performance trade-offs, for different types of imprecise components. The model helps to find the suitable imprecise component based on any desired error criterion. Therefore, the most significant advantage of the proposed model is that it can be simply exploited for design space exploration of different imprecise components to extract the suitable components, with the desired precision-cost-performance trade-off for any specific application. To demonstrate the efficiency of the proposed model, two novel families of Lowest-cost Imprecise Adders (LIAs) and Lowest-cost Imprecise Multipliers (LIMs) are introduced in the paper, which are systematically extracted based on exploration of the design space provided by the proposed model. A wide range of simulation and synthesis results are also presented in the paper to prove the comparable efficiency of the systematically extracted LIA/LIM structures with respect to the most efficient existing human-made imprecise components both individually and in a Multiply-Accumulate application.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3