Segmentation of Discriminative Patches in Human Activity Video

Author:

Zhang Bo1,Conci Nicola1,De Natale Francesco G.B.1

Affiliation:

1. University of Trento, Italy

Abstract

In this article, we present a novel approach to segment discriminative patches in human activity videos. First, we adopt the spatio-temporal interest points (STIPs) to represent significant motion patterns in the video sequence. Then, nonnegative sparse coding is exploited to generate a sparse representation of each STIP descriptor. We construct the feature vector for each video by applying a two-stage sum-pooling and l 2 -normalization operation. After training a multi-class classifier through the error-correcting code SVM, the discriminative portion of each video is determined as the patch that has the highest confidence while also being correctly classified according to the video category. Experimental results show that the video patches extracted by our method are more separable, while preserving the perceptually relevant portion of each activity.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Planar Reconstruction of Indoor Scenes from Sparse Views and Relative Camera Poses;Remote Sensing;2024-04-30

2. Data-driven enabled approaches for criteria-based video summarization: a comprehensive survey, taxonomy, and future directions;Multimedia Tools and Applications;2023-03-02

3. IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding Alignment;2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2022-06

4. Single-stage Instance Segmentation;ACM Transactions on Multimedia Computing, Communications, and Applications;2020-09-04

5. Evaluation of the integrated multi-satellite retrievals for global precipitation measurement over the Tibetan Plateau;Journal of Mountain Science;2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3