Affiliation:
1. University of Waterloo, Canada
2. Harvard University, USA
Abstract
Metareasoning can be achieved in probabilistic programming languages (PPLs) using agent models that
recursively nest
inference queries inside inference queries. However, the semantics of this powerful, reflection-like language feature has defied an operational treatment, much less reasoning principles for contextual equivalence. We give formal semantics to a core PPL with continuous distributions, scoring, general recursion, and nested queries. Unlike prior work, the presence of nested queries and general recursion makes it impossible to stratify the definition of a sampling-based operational semantics and that of a measure-theoretic semantics—the two semantics must be defined mutually recursively. A key yet challenging property we establish is that probabilistic programs have well-defined meanings: limits exist for the step-indexed measures they induce. Beyond a semantics, we offer relational reasoning principles for probabilistic programs making nested queries. We construct a step-indexed, biorthogonal logical-relations model. A soundness theorem establishes that logical relatedness implies contextual equivalence. We demonstrate the usefulness of the reasoning principles by proving novel equivalences of practical relevance—in particular, game-playing and decisionmaking agents. We mechanize our technical developments leading to the soundness proof using the Coq proof assistant. Nested queries are an important yet theoretically underdeveloped linguistic feature in PPLs; we are first to give them semantics in the presence of general recursion and to provide them with sound reasoning principles for contextual equivalence.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,Software
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献