GCTrees

Author:

Dragga Chris1ORCID,Santry Douglas J.2

Affiliation:

1. Advanced Technology Group, NetApp Inc., Research Triangle Park, NC

2. Advanced Technology Group, NetApp Inc., Kirchheim Germany

Abstract

File-system snapshots have been a key component of enterprise storage management since their inception. Creating and managing them efficiently, while maintaining flexibility and low overhead, has been a constant struggle. Although the current state-of-the-art mechanism—hierarchical reference counting—performs reasonably well for traditional small-file workloads, these workloads are increasingly vanishing from the enterprise data center, replaced instead with virtual machine and database workloads. These workloads center around a few very large files, violating the assumptions that allow hierarchical reference counting to operate efficiently. To better cope with these workloads, we introduce Generational Chain Trees (GCTrees), a novel method of space management that uses concepts of block lineage across snapshots rather than explicit reference counting. As a proof of concept, we create a prototype file system—gcext4, a modified version of ext4 that uses GCTrees as a basis for snapshots and copy-on-write. In evaluating this prototype empirically, we find that although they have a somewhat higher overhead for traditional workloads, GCTrees have dramatically lower overhead than hierarchical reference counting for large-file workloads, improving by a factor of 34 or more in some cases. Furthermore, gcext4 performs comparably to ext4 across all workloads, showing that GCTrees impose minor cost for their benefits.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of Deduplication on F2FS;ACM Transactions on Storage;2024-08-06

2. A Survey of Non-Volatile Main Memory File Systems;Journal of Computer Science and Technology;2023-03-30

3. Copy-on-Abundant-Write for Nimble File System Clones;ACM Transactions on Storage;2021-02-02

4. HMVFS: A Versioning File System on DRAM/NVM Hybrid Memory;Journal of Parallel and Distributed Computing;2018-10

5. Sketches of space;Proceedings of the 2017 Symposium on Cloud Computing;2017-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3