Dynamic resource provisioning for cloud-based gaming infrastructures

Author:

Marzolla Moreno1,Ferretti Stefano1,D'Angelo Gabriele1

Affiliation:

1. University of Bologna, Bologna, Italy

Abstract

Modern massively multiplayer online games (MMOGs) allow hundreds of thousands of players to interact with a large, dynamic virtual world. Implementing a scalable MMOG service is challenging because the system is subject to high workload variability, but nevertheless must always operate under very strict quality of service (QoS) requirements. Traditionally, MMOG services are implemented as large dedicated IT infrastructures with aggressive over-provisioning of resources in order to cope with the worst-case workload scenario. In this article we address the problem of building a large-scale, multitier MMOG service using resources provided by a Cloud computing infrastructure. The Cloud paradigm allows customers to request as many resources as they need using a pay-as-you-go model. We harness this paradigm by proposing a dynamic provisioning algorithm, which can resize the resource pool of a MMOG service to adapt to workload variability and maintain a response time below a given threshold. We use a queuing network performance model to quickly estimate the system response time for different configurations. The performance model is used within a greedy algorithm to compute the minimum number of servers to be allocated on each tier in order to satisfy the system response time constraint. Numerical experiments are used to validate the effectiveness of the proposed approach.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Cloud Gaming Experience through Optimized Virtual Machine Placement: A Comprehensive Review;Journal of Network and Systems Management;2024-08-24

2. Cloud for Gaming;Encyclopedia of Computer Graphics and Games;2024

3. Online Gaming Scalability;Encyclopedia of Computer Graphics and Games;2024

4. Client/Server Gaming Architectures;Encyclopedia of Computer Graphics and Games;2024

5. Online Gaming Architectures;Encyclopedia of Computer Graphics and Games;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3