HCMSL: Hybrid Cross-modal Similarity Learning for Cross-modal Retrieval

Author:

Zhang Chengyuan1,Song Jiayu2,Zhu Xiaofeng3,Zhu Lei4,Zhang Shichao2

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan

2. School of Computer Science and Engineering, Central South University, Changsha, Hunan

3. School of Computer Science and Engineering at University of Electronic Science and Technology of China, Chengdu, Sichuan

4. College of Information and Intelligence, Hunan Agricultural University School of Computer Science and Engineering, Central South University

Abstract

The purpose of cross-modal retrieval is to find the relationship between different modal samples and to retrieve other modal samples with similar semantics by using a certain modal sample. As the data of different modalities presents heterogeneous low-level feature and semantic-related high-level features, the main problem of cross-modal retrieval is how to measure the similarity between different modalities. In this article, we present a novel cross-modal retrieval method, named Hybrid Cross-Modal Similarity Learning model (HCMSL for short). It aims to capture sufficient semantic information from both labeled and unlabeled cross-modal pairs and intra-modal pairs with same classification label. Specifically, a coupled deep fully connected networks are used to map cross-modal feature representations into a common subspace. Weight-sharing strategy is utilized between two branches of networks to diminish cross-modal heterogeneity. Furthermore, two Siamese CNN models are employed to learn intra-modal similarity from samples of same modality. Comprehensive experiments on real datasets clearly demonstrate that our proposed technique achieves substantial improvements over the state-of-the-art cross-modal retrieval techniques.

Funder

National Natural Science Foundation of China

Science and Technology Plan of Hunan Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3