To Link or Synthesize? An Approach to Data Quality Comparison

Author:

Smith Duncan1ORCID,Elliot Mark1ORCID,Sakshaug Joseph W.2ORCID

Affiliation:

1. The University of Manchester, United Kingdom

2. Institute for Employment Research & Ludwig Maximilian University of Munich, Germany

Abstract

Linking administrative data to produce more informative data for subsequent analysis has become an increasingly common practice. However, there might be concomitant risks of disclosing sensitive information about individuals. One practice that reduces these risks is data synthesis. In data synthesis the data are used to fit a model from which synthetic data are then generated. The synthetic data are then released to end users. There are some scenarios where an end user might have the option of using linked data or accepting synthesized data. However, linkage and synthesis are susceptible to errors that could limit their usefulness. Here, we investigate the problem of comparing the quality of linked data to synthesized data and demonstrate through simulations how the problem might be approached. These comparisons are important when considering how an end user can be supplied with the highest-quality data and in situations where one must consider risk/utility tradeoffs.

Funder

National Centre for Research Methods

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems and Management,Information Systems

Reference53 articles.

1. Manfred Antoni, Katharina Koller, Marie-Christine Laible, and Florian Zimmermann. 2018. Orbis-ADIAB: From Record Linkage Key to Research Dataset: Combining Commercial Company Data with Administrative Employer-employee Data. FDZ Methodenreport 201804. Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany]. https://EconPapers.repec.org/RePEc:iab:iabfme:201804_en.

2. ALWA-ADIAB – Linked individual survey and administrative data for substantive and methodological research;Antoni Manfred;Schmollers Jahrbuch: Journal of Applied Social Science Studies/Zeitschrift für Wirtschafts- und Sozialwissenschaften,2012

3. T. Bachteler, J. Reiher, and R. Schnell. 2013. Similarity Filtering with Multibit Trees for Record Linkage. Technical Report. German Record Linkage Center. Working Paper Series No. WP-GRLC-2013-01.

4. Leo Breiman, Jerome Friedman, Charles J. Stone, and R. A. Olshen. 1984. Classification and Regression Trees. CRC Press.

5. Enhancing longitudinal surveys by linking to administrative data;Calderwood Lisa;Methodology of Longitudinal Surveys,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3