Affiliation:
1. MIT, Cambridge, MA
2. AT&T Labs — Research, Florham Park, NJ
3. Sharif University of Technology, Tehran, Iran
Abstract
We give approximation algorithms and inapproximability results for a class of movement problems. In general, these problems involve planning the coordinated motion of a large collection of objects (representing anything from a robot swarm or firefighter team to map labels or network messages) to achieve a global property of the network while minimizing the maximum or average movement. In particular, we consider the goals of achieving connectivity (undirected and directed), achieving connectivity between a given pair of vertices, achieving independence (a dispersion problem), and achieving a perfect matching (with applications to multicasting). This general family of movement problems encompasses an intriguing range of graph and geometric algorithms, with several real-world applications and a surprising range of approximability. In some cases, we obtain tight approximation and inapproximability results using direct techniques (without use of PCP), assuming just that P ≠ NP.
Funder
National Science Foundation
Institute for Theoretical Physics and Mathematics
Publisher
Association for Computing Machinery (ACM)
Subject
Mathematics (miscellaneous)
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献