Near-optimal algorithms for maximum constraint satisfaction problems

Author:

Charikar Moses1,Makarychev Konstantin2,Makarychev Yury3

Affiliation:

1. Princeton University, Princeton, NJ

2. IBM T.J. Watson Research Center, Yorktown Heights, NY

3. Microsoft Research New England, Cambridge, MA

Abstract

In this article, we present two approximation algorithms for the maximum constraint satisfaction problem with k variables in each constraint (MAX k -CSP). Given a (1 − ε) satisfiable 2CSP our first algorithm finds an assignment of variables satisfying a 1 − O (√ε) fraction of all constraints. The best previously known result, due to Zwick, was 1 − O1/3 ). The second algorithm finds a ck /2 k approximation for the MAX k -CSP problem (where c > 0.44 is an absolute constant). This result improves the previously best known algorithm by Hast, which had an approximation guarantee of Ω( k /(2 k log k )). Both results are optimal assuming the unique games conjecture and are based on rounding natural semidefinite programming relaxations. We also believe that our algorithms and their analysis are simpler than those previously known.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SDPs and Robust Satisfiability of Promise CSP;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

2. Near-Optimal NP-Hardness of Approximating MAX k-CSPR;Theory of Computing;2022

3. The Quest for Strong Inapproximability Results with Perfect Completeness;ACM Transactions on Algorithms;2021-08

4. Robust Algorithms with Polynomial Loss for Near-Unanimity CSPs;SIAM Journal on Computing;2019-01

5. Tighter continuous relaxations for MAP inference in discrete MRFs: A survey;Handbook of Numerical Analysis;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3