1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software available from tensorflow.org Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software available from tensorflow.org
2. Learning to optimize halide with tree search and random programs
3. Amit Agarwal Eldar Akchurin Chris Basoglu Guoguo Chen Scott Cyphers Jasha Droppo Adam Eversole Brian Guenter Mark Hillebrand Ryan Hoens Xuedong Huang Zhiheng Huang Vladimir Ivanov Alexey Kamenev Philipp Kranen Oleksii Kuchaiev Wolfgang Manousek Avner May Bhaskar Mitra Olivier Nano Gaizka Navarro Alexey Orlov Marko Padmilac Hari Parthasarathi Baolin Peng Alexey Reznichenko Frank Seide Michael L. Seltzer Malcolm Slaney Andreas Stolcke Yongqiang Wang Huaming Wang Kaisheng Yao Dong Yu Yu Zhang and Geoffrey Zweig. 2014. An introduction to computational networks and the computational network toolkit. Redmond WA. Amit Agarwal Eldar Akchurin Chris Basoglu Guoguo Chen Scott Cyphers Jasha Droppo Adam Eversole Brian Guenter Mark Hillebrand Ryan Hoens Xuedong Huang Zhiheng Huang Vladimir Ivanov Alexey Kamenev Philipp Kranen Oleksii Kuchaiev Wolfgang Manousek Avner May Bhaskar Mitra Olivier Nano Gaizka Navarro Alexey Orlov Marko Padmilac Hari Parthasarathi Baolin Peng Alexey Reznichenko Frank Seide Michael L. Seltzer Malcolm Slaney Andreas Stolcke Yongqiang Wang Huaming Wang Kaisheng Yao Dong Yu Yu Zhang and Geoffrey Zweig. 2014. An introduction to computational networks and the computational network toolkit. Redmond WA.
4. code2vec: learning distributed representations of code
5. Riyadh Baghdadi , Massinissa Merouani , Mohamed-Hicham Leghettas , Kamel Abdous , Taha Arbaoui , Karima Benatchba , and Saman amarasinghe. 2021 . A Deep Learning Based Cost Model for Automatic Code Optimization . In Proceedings of Machine Learning and Systems, A. Smola, A. Dimakis, and I. Stoica (Eds.). 3, 181–193 . https://proceedings.mlsys.org/paper/2021/file/3def184ad8f4755ff269862ea77393dd-Paper.pdf Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel Abdous, Taha Arbaoui, Karima Benatchba, and Saman amarasinghe. 2021. A Deep Learning Based Cost Model for Automatic Code Optimization. In Proceedings of Machine Learning and Systems, A. Smola, A. Dimakis, and I. Stoica (Eds.). 3, 181–193. https://proceedings.mlsys.org/paper/2021/file/3def184ad8f4755ff269862ea77393dd-Paper.pdf