DiffCAD: Weakly-Supervised Probabilistic CAD Model Retrieval and Alignment from an RGB Image

Author:

Gao Daoyi1ORCID,Rozenberszki David1ORCID,Leutenegger Stefan1ORCID,Dai Angela1ORCID

Affiliation:

1. Technical University of Munich, Munich, Germany

Abstract

Perceiving 3D structures from RGB images based on CAD model primitives can enable an effective, efficient 3D object-based representation of scenes. However, current approaches rely on supervision from expensive yet imperfect annotations of CAD models associated with real images, and encounter challenges due to the inherent ambiguities in the task - both in depth-scale ambiguity in monocular perception, as well as inexact matches of CAD database models to real observations. We thus propose DiffCAD, the first weakly-supervised probabilistic approach to CAD retrieval and alignment from an RGB image. We learn a probabilistic model through diffusion, modeling likely distributions of shape, pose, and scale of CAD objects in an image. This enables multi-hypothesis generation of different plausible CAD reconstructions, requiring only a few hypotheses to characterize ambiguities in depth/scale and inexact shape matches. Our approach is trained only on synthetic data, leveraging monocular depth and mask estimates to enable robust zero-shot adaptation to various real target domains. Despite being trained solely on synthetic data, our multi-hypothesis approach can even surpass the supervised state-of-the-art on the Scan2CAD dataset by 5.9% with 8 hypotheses.

Funder

Bavarian State Ministry of Science and the Arts

ERC Starting Grant

German Research Foundation (DFG) Grant

Publisher

Association for Computing Machinery (ACM)

Reference102 articles.

1. Scan2CAD: Learning CAD Model Alignment in RGB-D Scans

2. End-to-End CAD Model Retrieval and 9DoF Alignment in 3D Scans

3. Armen Avetisyan, Tatiana Khanova, Christopher Choy, Denver Dash, Angela Dai, and Matthias Nießner. 2020. Scenecad: Predicting object alignments and layouts in rgb-d scans. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XXII 16. Springer, 596--612.

4. Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla. 2022. IronDepth: Iterative Refinement of Single-View Depth using Surface Normal and its Uncertainty. ArXiv abs/2210.03676 (2022). https://api.semanticscholar.org/CorpusID:252762221

5. Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov, Valentin Khrulkov, and Artem Babenko. 2021. Label-Efficient Semantic Segmentation with Diffusion Models. ArXiv abs/2112.03126 (2021). https://api.semanticscholar.org/CorpusID:244908617

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3