Hybrid Quantum Annealing for Larger-than-QPU Lattice-structured Problems

Author:

Raymond Jack1ORCID,Stevanovic Radomir1ORCID,Bernoudy William1ORCID,Boothby Kelly1ORCID,McGeoch Catherine C.1ORCID,Berkley Andrew J.1ORCID,Farré Pau1ORCID,Pasvolsky Joel1ORCID,King Andrew D.1ORCID

Affiliation:

1. D-Wave Systems, Burnaby, BC, Canada

Abstract

Quantum processing units (QPUs) executing annealing algorithms have shown promise in optimization and simulation applications. Hybrid algorithms are a natural bridge to larger applications. We present a simple greedy method for solving larger-than-QPU lattice-structured Ising optimization problems. The method, implemented in the open source D-Wave Hybrid framework, uses a QPU coprocessor operating with generic parameters. Performance is evaluated for standard spin-glass problems on two lattice types with up to 11,616 spin variables, double the size that is directly programmable on any available QPU. The proposed method is shown to converge to low-energy solutions faster than an open source simulated annealing method that is either directly employed or substituted as a coprocessor in the hybrid method. Using newer Advantage QPUs in place of D-Wave 2000Q QPUs is shown to enhance convergence of the hybrid method to low energies and to achieve a lower final energy.

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Reference45 articles.

1. Decoherence in adiabatic quantum computation;Amin M. H. S.;Phys. Rev. A,2009

2. Matching microscopic and macroscopic responses in glasses;Baity-Jesi M.;Phys. Rev. Lett.,2017

3. On the computational complexity of Ising spin glass models

4. Partitioning Optimization Problems for Hybrid Classical/Quantum Execution;Booth Michael;D-Wave White Paper,2017

5. Kelly Boothby Paul Bunyk Jack Raymond and Aidan Roy. 2019. Next-generation topology of D-Wave quantum processors. arxiv:2003.00133. Retrieved from https://arxiv.org/abs/2003.00133.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3