Pricing cloud bandwidth reservations under demand uncertainty

Author:

Niu Di1,Feng Chen1,Li Baochun1

Affiliation:

1. University of Toronto, Toronto, Ontario, Canada

Abstract

In a public cloud, bandwidth is traditionally priced in a pay-as-you-go model. Reflecting the recent trend of augmenting cloud computing with bandwidth guarantees, we consider a novel model of cloud bandwidth allocation and pricing when explicit bandwidth reservation is enabled. We argue that a tenant's utility depends not only on its bandwidth usage, but more importantly on the portion of its demand that is satisfied with a performance guarantee. Our objective is to determine the optimal policy for pricing cloud bandwidth reservations, in order to maximize social welfare, i.e., the sum of the expected profits that can be made by all tenants and the cloud provider, even with the presence of demand uncertainty. The problem turns out to be a large-scale network optimization problem with a coupled objective function. We propose two new distributed solutions --- based on chaotic equation updates and cutting-plane methods --- that prove to be more efficient than existing solutions based on consistency pricing and subgradient methods. In addition, we address the practical challenge of forecasting demand statistics, required by our optimization problem as input. We propose a factor model for near-future demand prediction, and test it on a real-world video workload dataset. All included, we have designed a fully computerized trading environment for cloud bandwidth reservations, which operates effectively at a fine granularity of as small as ten minutes in our trace-driven simulations.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference25 articles.

1. Amazon Cluster Compute 2011. http://aws.amazon.com/ec2/hpc-applications/. Amazon Cluster Compute 2011. http://aws.amazon.com/ec2/hpc-applications/.

2. Amazon Web Services. http://aws.amazon.com/. Amazon Web Services. http://aws.amazon.com/.

3. UUSee Inc. {Online}. Available: http://www.uusee.com. UUSee Inc. {Online}. Available: http://www.uusee.com.

4. Four Reasons We Choose Amazon's Cloud as Our Computing Platform. The Netflix "Tech" Blog Dec. 14 2010. Four Reasons We Choose Amazon's Cloud as Our Computing Platform. The Netflix "Tech" Blog Dec. 14 2010.

5. Optimal content placement for a large-scale VoD system

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3