Rumor centrality

Author:

Shah Devavrat1,Zaman Tauhid2

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA, USA

2. Wharton School, University of Pennsylvania, Philadelphia, PA, USA

Abstract

We consider the problem of detecting the source of a rumor (information diffusion) in a network based on observations about which set of nodes possess the rumor. In a recent work [10], this question was introduced and studied. The authors proposed rumor centrality as an estimator for detecting the source. They establish it to be the maximum likelihood estimator with respect to the popular Susceptible Infected (SI) model with exponential spreading time for regular trees. They showed that as the size of infected graph increases, for a line (2-regular tree) graph, the probability of source detection goes to 0 while for d-regular trees with d ≥ 3 the probability of detection, say α d , remains bounded away from 0 and is less than 1/2. Their results, however stop short of providing insights for the heterogeneous setting such as irregular trees or the SI model with non-exponential spreading times. This paper overcomes this limitation and establishes the effectiveness of rumor centrality for source detection for generic random trees and the SI model with a generic spreading time distribution. The key result is an interesting connection between a multi-type continuous time branching process (an equivalent representation of a generalized Polya's urn, cf. [1]) and the effectiveness of rumor centrality. Through this, it is possible to quantify the detection probability precisely. As a consequence, we recover all the results of [10] as a special case and more importantly, we obtain a variety of results establishing the universality of rumor centrality in the context of tree-like graphs and the SI model with a generic spreading time distribution.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph contrastive learning for source localization in social networks;Information Sciences;2024-09

2. HMSL: Source localization based on higher-order Markov propagation;Chaos, Solitons & Fractals;2024-05

3. Contagion Source Detection by Maximum Likelihood Estimation and Starlike Graph Approximation;2024 58th Annual Conference on Information Sciences and Systems (CISS);2024-03-13

4. Disinformation detection using graph neural networks: a survey;Artificial Intelligence Review;2024-02-14

5. Eve, Adam and the preferential attachment tree;Probability Theory and Related Fields;2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3