The Aesthetics of Disharmony: Harnessing Sounds and Images for Dynamic Soundscapes Generation

Author:

Escarce Junior Mário1ORCID,Rossmann Martins Georgia2ORCID,Soriano Marcolino Leandro1ORCID,Rubegni Elisa1ORCID

Affiliation:

1. Lancaster University, Lancaster, UK

2. Phersu Interactive, Belo Horizonte, Brazil

Abstract

This work presents an autonomous approach that explores the dynamic generation of relaxing soundscapes for games and artistic installations. Differently from past works, this system can generate music and images simultaneously, preserving human intent and coherency. We present our algorithm for the generation of audiovisual instances and also a system based on this approach, verifying the quality of the outcomes it can produce in light of current approaches for the generation of images and music. We also instigate the discussion around the new paradigm in arts, where the creative process is delegated to autonomous systems, with limited human participation. Our user study (N=74) shows that our approach overcomes current deep learning models in terms of quality, being recognized as human production, as if the outcome were being generated out of an endless musical improvisation performance.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Human-Computer Interaction,Social Sciences (miscellaneous)

Reference75 articles.

1. Music composition using recurrent neural networks. CS 224n: Natural Language Processing with Deep Learning;Agarwala Nipun;Spring,2017

2. Andrea Agostinelli Timo I. Denk Zalán Borsos Jesse Engel Mauro Verzetti Antoine Caillon Qingqing Huang Aren Jansen Adam Roberts Marco Tagliasacchi Matt Sharifi Neil Zeghidour and Christian Frank. 2023. MusicLM: Generating Music From Text. arxiv:2301.11325. Andrea Agostinelli Timo I. Denk Zalán Borsos Jesse Engel Mauro Verzetti Antoine Caillon Qingqing Huang Aren Jansen Adam Roberts Marco Tagliasacchi Matt Sharifi Neil Zeghidour and Christian Frank. 2023. MusicLM: Generating Music From Text. arxiv:2301.11325.

3. Here Comes No Boom! The Lack of Sound Feedback Effects on Performance and User Experience in a Gamified Image Classification Task

4. Willi Apel . 2003. The Harvard dictionary of music. 16 , Harvard University Press, Harvard University . Willi Apel. 2003. The Harvard dictionary of music. 16, Harvard University Press, Harvard University.

5. BGMC. 2014. Cafe Music BGM channel. https://www.youtube.com/channel/UCJhjE7wbdYAae1G25m0tHAA BGMC. 2014. Cafe Music BGM channel. https://www.youtube.com/channel/UCJhjE7wbdYAae1G25m0tHAA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3