Unifying Concurrent Objects and Distributed Tasks

Author:

Castañeda Armando1,Rajsbaum Sergio1,Raynal Michel2

Affiliation:

1. Instituto de Matemáticas, UNAM, México

2. Univ Rennes, IRISA 8 Hong Kong Polytechnic University

Abstract

Tasks and objects are two predominant ways of specifying distributed problems where processes should compute outputs based on their inputs. Roughly speaking, a task specifies, for each set of processes and each possible assignment of input values, their valid outputs. In contrast, an object is defined by a sequential specification. Also, an object can be invoked multiple times by each process, while a task is a one-shot problem. Each one requires its own implementation notion, stating when an execution satisfies the specification. For objects, linearizability is commonly used, while tasks implementation notions are less explored. The article introduces the notion of interval-sequential object, and the corresponding implementation notion of interval-linearizability , to encompass many problems that have no sequential specification as objects. It is shown that interval-sequential specifications are local , namely, one can consider interval-linearizable object implementations in isolation and compose them for free, without sacrificing interval-linearizability of the whole system. The article also introduces the notion of refined tasks and its corresponding satisfiability notion. In contrast to a task, a refined task can be invoked multiple times by each process. Also, objects that cannot be defined using tasks can be defined using refined tasks. In fact, a main result of the article is that interval-sequential objects and refined tasks have the same expressive power and both are complete in the sense that they are able to specify any prefix-closed set of well-formed executions. Interval-linearizability and refined tasks go beyond unifying objects and tasks; they shed new light on both of them. On the one hand, interval-linearizability brings to task the following benefits: an explicit operational semantics, a more precise implementation notion, a notion of state, and a locality property. On the other hand, refined tasks open new possibilities of applying topological techniques to objects.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Read/write fence-free work-stealing with multiplicity;Journal of Parallel and Distributed Computing;2024-04

2. Asynchronous Wait-Free Runtime Verification and Enforcement of Linearizability;Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing;2023-06-16

3. Locally solvable tasks and the limitations of valency arguments;Journal of Parallel and Distributed Computing;2023-06

4. Tasks in modular proofs of concurrent algorithms;Information and Computation;2023-06

5. Intermediate Value Linearizability: A Quantitative Correctness Criterion;Journal of the ACM;2023-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3