CamP: Camera Preconditioning for Neural Radiance Fields

Author:

Park Keunhong1,Henzler Philipp1,Mildenhall Ben1,Barron Jonathan T.1,Martin-Brualla Ricardo1

Affiliation:

1. Google Research, USA

Abstract

Neural Radiance Fields (NeRF) can be optimized to obtain high-fidelity 3D scene reconstructions of objects and large-scale scenes. However, NeRFs require accurate camera parameters as input --- inaccurate camera parameters result in blurry renderings. Extrinsic and intrinsic camera parameters are usually estimated using Structure-from-Motion (SfM) methods as a pre-processing step to NeRF, but these techniques rarely yield perfect estimates. Thus, prior works have proposed jointly optimizing camera parameters alongside a NeRF, but these methods are prone to local minima in challenging settings. In this work, we analyze how different camera parameterizations affect this joint optimization problem, and observe that standard parameterizations exhibit large differences in magnitude with respect to small perturbations, which can lead to an ill-conditioned optimization problem. We propose using a proxy problem to compute a whitening transform that eliminates the correlation between camera parameters and normalizes their effects, and we propose to use this transform as a preconditioner for the camera parameters during joint optimization. Our preconditioned camera optimization significantly improves reconstruction quality on scenes from the Mip-NeRF 360 dataset: we reduce error rates (RMSE) by 67% compared to state-of-the-art NeRF approaches that do not optimize for cameras like Zip-NeRF, and by 29% relative to state-of-the-art joint optimization approaches using the camera parameterization of SCNeRF. Our approach is easy to implement, does not significantly increase runtime, can be applied to a wide variety of camera parameterizations, and can straightforwardly be incorporated into other NeRF-like models.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference49 articles.

1. Jonathan T. Barron , Ben Mildenhall , Dor Verbin , Pratul P. Srinivasan , and Peter Hedman . 2022. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. CVPR ( 2022 ). Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. 2022. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. CVPR (2022).

2. Jonathan T. Barron , Ben Mildenhall , Dor Verbin , Pratul P. Srinivasan , and Peter Hedman . 2023. Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. arXiv:2304.06706 ( 2023 ). Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. 2023. Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. arXiv:2304.06706 (2023).

3. Sai Bi , Zexiang Xu , Pratul Srinivasan , Ben Mildenhall , Kalyan Sunkavalli , Miloš Hašan , Yannick Hold-Geoffroy , David Kriegman , and Ravi Ramamoorthi . 2020. Neural reflectance fields for appearance acquisition. arXiv:2008.03824 ( 2020 ). Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. 2020. Neural reflectance fields for appearance acquisition. arXiv:2008.03824 (2020).

4. Wenjing Bian , Zirui Wang , Kejie Li , Jia-Wang Bian , and Victor Adrian Prisacariu . 2022. NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior. arXiv:2212.07388 ( 2022 ). Wenjing Bian, Zirui Wang, Kejie Li, Jia-Wang Bian, and Victor Adrian Prisacariu. 2022. NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior. arXiv:2212.07388 (2022).

5. Yu Chen and Gim Hee Lee . 2023 . DBARF: Deep Bundle-Adjusting Generalizable Neural Radiance Fields. CVPR (2023). Yu Chen and Gim Hee Lee. 2023. DBARF: Deep Bundle-Adjusting Generalizable Neural Radiance Fields. CVPR (2023).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Construct-Optimize Approach to Sparse View Synthesis without Camera Pose;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

2. Rip-NeRF: Anti-aliasing Radiance Fields with Ripmap-Encoded Platonic Solids;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

3. Deblur-GS: 3D Gaussian Splatting from Camera Motion Blurred Images;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-05-11

4. CBARF: Cascaded Bundle-Adjusting Neural Radiance Fields From Imperfect Camera Poses;IEEE Transactions on Multimedia;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3