ABLE: Meta-Path Prediction in Heterogeneous Information Networks

Author:

Huang Chenji1ORCID,Fang Yixiang2ORCID,Lin Xuemin1ORCID,Cao Xin1ORCID,Zhang Wenjie1ORCID

Affiliation:

1. The University of New South Wales, UNSW Sydney, NSW, Australia

2. School of Data Science, The Chinese University of Hong Kong, Shenzhen, China

Abstract

Given a heterogeneous information network (HIN) H, a head node h , a meta-path P, and a tail node t , the meta-path prediction aims at predicting whether h can be linked to t by an instance of P. Most existing solutions either require predefined meta-paths, which limits their scalability to schema-rich HINs and long meta-paths, or do not aim at predicting the existence of an instance of P. To address these issues, in this article, we propose a novel prediction model, called ABLE, by exploiting the A ttention mechanism and B i L STM for E mbedding. Particularly, we present a concatenation node embedding method by considering the node types and a dynamic meta-path embedding method that carefully considers the importance and positions of edge types in the meta-paths by the Attention mechanism and BiLSTM model, respectively. A triplet embedding is then derived to complete the prediction. We conduct extensive experiments on four real datasets. The empirical results show that ABLE outperforms the state-of-the-art methods by up to 20% and 22% of improvement of AUC and AP scores, respectively.

Funder

CUHK-SZ

ARC

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference55 articles.

1. VQA: Visual Question Answering

2. Variational Knowledge Graph Reasoning

3. Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen Tau Yih, Yejin Choi, Percy Liang, and Luke Zettlemoyer. 2020. QUAC: Question answering in context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2174–2184.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3