Dictionary Compression in Point Cloud Data Management

Author:

Pavlovic Mirjana1,Bastian Kai-Niklas2,Gildhoff Hinnerk2,Ailamaki Anastasia3

Affiliation:

1. École Polytechnique Fédéale de Lausanne, Switzerland

2. SAP SE, Walldorf, Germany

3. École Polytechnique Fédérale de Lausanne 8 RAW Labs SA, Switzerland

Abstract

Nowadays, massive amounts of point cloud data can be collected thanks to advances in data acquisition and processing technologies such as dense image matching and airborne LiDAR scanning. With the increase in volume and precision, point cloud data offers a useful source of information for natural-resource management, urban planning, self-driving cars, and more. At the same time, on the scale that point cloud data is produced, management challenges are introduced: it is important to achieve efficiency both in terms of querying performance and space requirements. Traditional file-based solutions to point cloud management offer space efficiency, however, they cannot scale to such massive data and provide the declarative power of a DBMS. In this article, we propose a time- and space-efficient solution to storing and managing point cloud data in main memory column-store DBMS. Our solution, Space-Filling Curve Dictionary-Based Compression (SFC-DBC), employs dictionary-based compression in the spatial data management domain and enhances it with indexing capabilities by using space-filling curves. SFC-DBC does so by constructing the space-filling curve over a compressed, artificially introduced dictionary space. Consequently, SFC-DBC significantly optimizes query execution and yet does not require additional storage resources, compared to traditional dictionary-based compression. With respect to space-filling-curve-based approaches, it minimizes storage footprint and increases resilience to skew. As a proof of concept, we develop and evaluate our approach as a research prototype in the context of SAP HANA. SFC-DBC outperforms other dictionary-based compression schemes by up to 61% in terms of space and up to 9.4× in terms of query performance.

Funder

European Research Council

EU FP7 programme

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3