CrossCert: A Cross-Checking Detection Approach to Patch Robustness Certification for Deep Learning Models

Author:

Zhou Qilin1ORCID,Wei Zhengyuan2ORCID,Wang Haipeng1ORCID,Jiang Bo3ORCID,Chan Wing-Kwong1ORCID

Affiliation:

1. City University of Hong Kong, Hong Kong, China

2. City University of Hong Kong, Hong Kong, China / The University of Hong Kong, Hong Kong, China

3. Beihang University, Beijing, China

Abstract

Patch robustness certification is an emerging kind of defense technique against adversarial patch attacks with provable guarantees. There are two research lines: certified recovery and certified detection. They aim to correctly label malicious samples with provable guarantees and issue warnings for malicious samples predicted to non-benign labels with provable guarantees, respectively. However, existing certified detection defenders suffer from protecting labels subject to manipulation, and existing certified recovery defenders cannot systematically warn samples about their labels. A certified defense that simultaneously offers robust labels and systematic warning protection against patch attacks is desirable. This paper proposes a novel certified defense technique called CrossCert. CrossCert formulates a novel approach by cross-checking two certified recovery defenders to provide unwavering certification and detection certification. Unwavering certification ensures that a certified sample, when subjected to a patched perturbation, will always be returned with a benign label without triggering any warnings with a provable guarantee. To our knowledge, CrossCert is the first certified detection technique to offer this guarantee. Our experiments show that, with a slightly lower performance than ViP and comparable performance with PatchCensor in terms of detection certification, CrossCert certifies a significant proportion of samples with the guarantee of unwavering certification.

Funder

City University of Hong Kong

Publisher

Association for Computing Machinery (ACM)

Reference44 articles.

1. 2023. CrossCert. https://github.com/kio-cs/CrossCert

2. Tom B Brown Dandelion Mané Aurko Roy Martín Abadi and Justin Gilmer. 2017. Adversarial patch. arXiv preprint arXiv:1712.09665.

3. Towards Practical Certifiable Patch Defense with Vision Transformer

4. ImageNet: A large-scale hierarchical image database

5. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In International Conference on Learning Representations. https://openreview.net/forum?id=YicbFdNTTy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Context-Aware Fuzzing for Robustness Enhancement of Deep Learning Models;ACM Transactions on Software Engineering and Methodology;2024-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3