A-DFA

Author:

Becchi Michela1,Crowley Patrick2

Affiliation:

1. University of Missouri

2. Washington University in St. Louis

Abstract

Modern network intrusion detection systems need to perform regular expression matching at line rate in order to detect the occurrence of critical patterns in packet payloads. While Deterministic Finite Automata (DFAs) allow this operation to be performed in linear time, they may exhibit prohibitive memory requirements. Kumar et al. [2006a] have proposed Delayed Input DFAs (D2FAs), which provide a trade-off between the memory requirements of the compressed DFA and the number of states visited for each character processed, which in turn affects the memory bandwidth required to evaluate regular expressions. In this article we introduce Amortized time  −  bandwidth overhead DFAs ( A  −  DFAs ), a general compression technique that results in at most N ( k  + 1)/ k state traversals when processing a string of length N , k being a positive integer. In comparison to the D2FA approach, our technique achieves comparable levels of compression with lower provable bounds on memory bandwidth (or greater compression for a given bandwidth bound). Moreover, the A-DFA algorithm has lower complexity, can be applied during DFA creation, and is suitable for scenarios where a compressed DFA needs to be dynamically built or updated. Finally, we show how to combine A-DFA with alphabet reduction and multistride DFAs, two techniques aimed at reducing the memory space and bandwidth requirement of DFAs, and discuss memory encoding schemes suitable for A-DFAs.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3