Abstracting definitional interpreters (functional pearl)

Author:

Darais David1,Labich Nicholas1,Nguyen Phúc C.1,Van Horn David1

Affiliation:

1. University of Maryland, USA

Abstract

In this functional pearl, we examine the use of definitional interpreters as a basis for abstract interpretation of higher-order programming languages. As it turns out, definitional interpreters, especially those written in monadic style, can provide a nice basis for a wide variety of collecting semantics, abstract interpretations, symbolic executions, and their intermixings. But the real insight of this story is a replaying of an insight from Reynold's landmark paper, Definitional Interpreters for Higher-Order Programming Languages , in which he observes definitional interpreters enable the defined-language to inherit properties of the defining-language. We show the same holds true for definitional abstract interpreters. Remarkably, we observe that abstract definitional interpreters can inherit the so-called “pushdown control flow” property, wherein function calls and returns are precisely matched in the abstract semantics, simply by virtue of the function call mechanism of the defining-language. The first approaches to achieve this property for higher-order languages appeared within the last ten years, and have since been the subject of many papers. These approaches start from a state-machine semantics and uniformly involve significant technical engineering to recover the precision of pushdown control flow. In contrast, starting from a definitional interpreter, the pushdown control flow property is inherent in the meta-language and requires no further technical mechanism to achieve.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-Level Debugging for Static Analysers;Proceedings of the 16th ACM SIGPLAN International Conference on Software Language Engineering;2023-10-23

2. Initializing Global Objects: Time and Order;Proceedings of the ACM on Programming Languages;2023-10-16

3. Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters;Proceedings of the ACM on Programming Languages;2023-08-30

4. Grisette: Symbolic Compilation as a Functional Programming Library;Proceedings of the ACM on Programming Languages;2023-01-09

5. A Sound Definitional Interpreter for a Simply Typed Functional Language;Axioms;2022-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3