Reinforcement of General Shell Structures

Author:

Gil-Ureta Francisca1,Pietroni Nico2,Zorin Denis1

Affiliation:

1. New York University, New York, NY

2. University of Technology Sydney

Abstract

We introduce an efficient method for designing shell reinforcements of minimal weight. Inspired by classical Michell trusses, we create a reinforcement layout whose members are aligned with optimal stress directions, then optimize their shape minimizing the volume while keeping stresses bounded. We exploit two predominant techniques for reinforcing shells: adding ribs aligned with stress directions and using thicker walls on regions of high stress. Most previous work can generate either only ribs or only variable-thickness walls. However, in the general case, neither approach by itself will provide optimal solutions. By using a more precise volume model, our method is capable of producing optimized structures with the full range of qualitative behaviors: from ribs to walls and smoothly transitioning in between. Our method includes new algorithms for determining the layout of reinforcement structure elements, and an efficient algorithm to optimize their shape, minimizing a non-linear non-convex functional at a fraction of the cost and with better optimality compared to standard solvers. We demonstrate the optimization results for a variety of shapes and the improvements it yields in the strength of 3D-printed objects.

Funder

National Science Foundation

Adobe Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3