A tree convolution algorithm for the solution of queueing networks

Author:

Lam Simon S.1,Lien Y. Luke1

Affiliation:

1. Univ. of Texas, Austin

Abstract

A new algorithm called the tree convolution algorithm, for the computation of normalization constants and performance measures of product-form queueing networks, is presented. Compared to existing algorithms, the algorithm is very efficient in the solution of networks with many service centers and many sparse routing chains. (A network is said to have sparse routing chains if the chains visit, on the average, only a small fraction of all centers in the network.) In such a network, substantial time and space savings can be achieved by exploiting the network's routing information. The time and space reductions are made possible by two features of the algorithm: (1) the sequence of array convolutions to compute a normalization constant is determined according to the traversal of a tree; (2) the convolutions are performed between arrays that are smaller than arrays used by existing algorithms. The routing information of a given network is used to configure the tree to reduce the algorithm's time and space requirements; some effective heuristics for optimization are described. An exact solution of a communication network model with 64 queues and 32 routing chains is illustrated.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. QMLE;ACM Transactions on Modeling and Performance Evaluation of Computing Systems;2018-09-15

2. Using enterprise architecture analysis and interview data to estimate service response time;The Journal of Strategic Information Systems;2013-03

3. An enterprise architecture framework for multi-attribute information systems analysis;Software & Systems Modeling;2012-11-16

4. The general form linearizer algorithms: A new family of approximate mean value analysis algorithms;Performance Evaluation;2008-02

5. Modeling a Phone Center: Analysis of a Multichannel, Multiresource Processor Shared Loss System;Management Science;2001-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3