A Fog-Based Application for Human Activity Recognition Using Personal Smart Devices

Author:

Concone Federico1,Re Giuseppe Lo1,Morana Marco1ORCID

Affiliation:

1. University of Palermo, Palermo, Italy

Abstract

The diffusion of heterogeneous smart devices capable of capturing and analysing data about users, and/or the environment, has encouraged the growth of novel sensing methodologies. One of the most attractive scenarios in which such devices, such as smartphones, tablet computers, or activity trackers, can be exploited to infer relevant information is human activity recognition (HAR). Even though some simple HAR techniques can be directly implemented on mobile devices, in some cases, such as when complex activities need to be analysed timely, users’ smart devices can operate as part of a more complex architecture. In this article, we propose a multi-device HAR framework that exploits the fog computing paradigm to move heavy computation from the sensing layer to intermediate devices and then to the cloud. As compared to traditional cloud-based solutions, this choice allows to overcome processing and storage limitations of wearable devices while also reducing the overall bandwidth consumption. Experimental analysis aims to evaluate the performance of the entire platform in terms of accuracy of the recognition process while also highlighting the benefits it might bring in smart environments.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference49 articles.

1. A survey of cross-validation procedures for model selection

2. Random search for hyper-parameter optimization;Bergstra James;Journal of Machine Learning Research 13,2012

3. Fog computing and its role in the internet of things

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3