Affiliation:
1. University of Palermo, Palermo, Italy
Abstract
The diffusion of heterogeneous smart devices capable of capturing and analysing data about users, and/or the environment, has encouraged the growth of novel sensing methodologies. One of the most attractive scenarios in which such devices, such as smartphones, tablet computers, or activity trackers, can be exploited to infer relevant information is human activity recognition (HAR). Even though some simple HAR techniques can be directly implemented on mobile devices, in some cases, such as when complex activities need to be analysed timely, users’ smart devices can operate as part of a more complex architecture. In this article, we propose a multi-device HAR framework that exploits the fog computing paradigm to move heavy computation from the sensing layer to intermediate devices and then to the cloud. As compared to traditional cloud-based solutions, this choice allows to overcome processing and storage limitations of wearable devices while also reducing the overall bandwidth consumption. Experimental analysis aims to evaluate the performance of the entire platform in terms of accuracy of the recognition process while also highlighting the benefits it might bring in smart environments.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Reference49 articles.
1. A survey of cross-validation procedures for model selection
2. Random search for hyper-parameter optimization;Bergstra James;Journal of Machine Learning Research 13,2012
3. Fog computing and its role in the internet of things
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献