Full Abstraction for Signal Flow Graphs

Author:

Bonchi Filippo1,Sobocinski Pawel2,Zanasi Fabio3

Affiliation:

1. École Normale Supérieure de Lyon, CNRS, Lyon, France

2. University of Southampton, Southampton, United Kingdom

3. École Normale Supérieure de Lyon, Lyon, France

Abstract

Network theory uses the string diagrammatic language of monoidal categories to study graphical structures formally, eschewing specialised translations into intermediate formalisms. Recently, there has been a concerted research focus on developing a network theoretic approach to signal flow graphs, which are classical structures in control theory, signal processing and a cornerstone in the study of feedback. In this approach, signal flow graphs are given a relational denotational semantics in terms of formal power series. Thus far, the operational behaviour of such signal flow graphs has only been discussed at an intuitive level. In this paper we equip them with a structural operational semantics. As is typically the case, the purely operational picture is too concrete -- two graphs that are denotationally equal may exhibit different operational behaviour. We classify the ways in which this can occur and show that any graph can be realised -- rewritten, using the graphical theory, into an executable form where the operational behavior and the denotation coincides.

Funder

Agence Nationale de la Recherche

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference31 articles.

1. J. C. Baez. Network theory. http://math.ucr.edu/home/baez/networks/ 2014. J. C. Baez. Network theory. http://math.ucr.edu/home/baez/networks/ 2014.

2. A Categorical Semantics of Signal Flow Graphs

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantics for a Lambda Calculus for String Diagrams;Samson Abramsky on Logic and Structure in Computer Science and Beyond;2023

2. Monoidal Streams for Dataflow Programming;Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science;2022-08-02

3. Calculational Proofs in Relational Graphical Linear Algebra;Lecture Notes in Computer Science;2020

4. ARx: Reactive Programming for Synchronous Connectors;Lecture Notes in Computer Science;2020

5. Graph-Based Software Framework for Implementation of Complex Computational Methods;Programming and Computer Software;2019-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3