Core Decomposition in Multilayer Networks

Author:

Galimberti Edoardo1,Bonchi Francesco2,Gullo Francesco3,Lanciano Tommaso4

Affiliation:

1. ISI Foundation and University of Turin, Torino, Italy

2. ISI Foundation and Eurecat, Torino, Italy

3. UniCredit, Rome, Italy

4. Sapienza University of Rome, Roma, Italy

Abstract

Multilayer networks are a powerful paradigm to model complex systems, where multiple relations occur between the same entities. Despite the keen interest in a variety of tasks, algorithms, and analyses in this type of network, the problem of extracting dense subgraphs has remained largely unexplored so far. As a first step in this direction, in this work, we study the problem of core decomposition of a multilayer network . Unlike the single-layer counterpart in which cores are all nested into one another and can be computed in linear time, the multilayer context is much more challenging as no total order exists among multilayer cores; rather, they form a lattice whose size is exponential in the number of layers. In this setting, we devise three algorithms, which differ in the way they visit the core lattice and in their pruning techniques. We assess time and space efficiency of the three algorithms on a large variety of real-world multilayer networks. We then move a step forward and study the problem of extracting the inner-most (also known as maximal ) cores, i.e., the cores that are not dominated by any other core in terms of their core index in all the layers. inner-most cores are typically orders of magnitude less than all the cores. Motivated by this, we devise an algorithm that effectively exploits the maximality property and extracts inner-most cores directly, without first computing a complete decomposition. This allows for a consistent speed up over a naïve method that simply filters out non-inner-most ones from all the cores. Finally, we showcase the multilayer core-decomposition tool in a variety of scenarios and problems. We start by considering the problem of densest-subgraph extraction in multilayer networks . We introduce a definition of multilayer densest subgraph that tradesoff between high density and number of layers in which the high density holds, and exploit multilayer core decomposition to approximate this problem with quality guarantees. As further applications, we show how to utilize multilayer core decomposition to speed-up the extraction of frequent cross-graph quasi-cliques and to generalize the community-search problem to the multilayer setting.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Jaccard-constrained dense subgraph discovery;Machine Learning;2024-07-23

2. MCR-Tree: An Efficient Index for Multi-dimensional Core Search;Proceedings of the ACM on Management of Data;2024-05-29

3. FocusCore Decomposition of Multilayer Graphs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Fast Multilayer Core Decomposition and Indexing;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. A Survey on the Densest Subgraph Problem and its Variants;ACM Computing Surveys;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3