A stateless approach to connection-oriented protocols

Author:

Shieh Alan1,Myers Andrew C.1,Sirer Emin Gün1

Affiliation:

1. Cornell University

Abstract

Traditional operating system interfaces and network protocol implementations force some system state to be kept on both sides of a connection. This state ties the connection to its endpoints, impedes transparent failover, permits denial-of-service attacks, and limits scalability. This article introduces a novel TCP-like transport protocol and a new interface to replace sockets that together enable all state to be kept on one endpoint, allowing the other endpoint, typically the server, to operate without any per-connection state. Called Trickles , this approach enables servers to scale well with increasing numbers of clients, consume fewer resources, and better resist denial-of-service attacks. Measurements on a full implementation in Linux indicate that Trickles achieves performance comparable to TCP/IP, interacts well with other flows, and scales well. Trickles also enables qualitatively different kinds of networked services. Services can be geographically replicated and contacted through an anycast primitive for improved availability and performance. Widely-deployed practices that currently have client-observable side effects, such as periodic server reboots, connection redirection, and failover, can be made transparent, and perform well, under Trickles. The protocol is secure against tampering and replay attacks, and the client interface is backward-compatible, requiring no changes to sockets-based client applications.

Funder

Office of Naval Research

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cypher: A New Innovative Application-Level Internet Protocol;2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN);2023-06

2. Reflections on the REST architectural style and "principled design of the modern web architecture" (impact paper award);Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering;2017-08-21

3. Implementation of stateless transport protocols in ns-3;Proceedings of the 2015 Workshop on ns-3;2015-05-13

4. Analyzing the possibility of applying asymmetric transport protocols in terms of software defined networks;Automatic Control and Computer Sciences;2015-03

5. Bloom Filter-Based Secure Data Forwarding in Large-Scale Cyber-Physical Systems;Mathematical Problems in Engineering;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3