Affiliation:
1. NSUT East Campus (Formerly AIACTR), GGSIP University, New Delhi, India
2. NSUT, Main Campus, New Delhi, India
Abstract
Clustering approaches are extensively used by many areas such as IR, Data Integration, Document Classification, Web Mining, Query Processing, and many other domains and disciplines. Nowadays, much literature describes clustering algorithms on multivariate data sets. However, there is limited literature that presented them with exhaustive and extensive theoretical analysis as well as experimental comparisons. This experimental survey paper deals with the basic principle, and techniques used, including important characteristics, application areas, run-time performance, internal, external, and stability validity of cluster quality, etc., on five different data sets of eleven clustering algorithms. This paper analyses how these algorithms behave with five different multivariate data sets in data representation. To answer this question, we compared the efficiency of eleven clustering approaches on five different data sets using three validity metrics-internal, external, and stability and found the optimal score to know the feasible solution of each algorithm. In addition, we have also included four popular and modern clustering algorithms with only their theoretical discussion. Our experimental results for only traditional clustering algorithms showed that different algorithms performed different behavior on different data sets in terms of running time (speed), accuracy and, the size of data set. This study emphasized the need for more adaptive algorithms and a deliberate balance between the running time and accuracy with their theoretical as well as implementation aspects.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献