Parsing expression grammars

Author:

Ford Bryan1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

For decades we have been using Chomsky's generative system of grammars, particularly context-free grammars (CFGs) and regular expressions (REs), to express the syntax of programming languages and protocols. The power of generative grammars to express ambiguity is crucial to their original purpose of modelling natural languages, but this very power makes it unnecessarily difficult both to express and to parse machine-oriented languages using CFGs. Parsing Expression Grammars (PEGs) provide an alternative, recognition-based formal foundation for describing machine-oriented syntax, which solves the ambiguity problem by not introducing ambiguity in the first place. Where CFGs express nondeterministic choice between alternatives, PEGs instead use prioritized choice . PEGs address frequently felt expressiveness limitations of CFGs and REs, simplifying syntax definitions and making it unnecessary to separate their lexical and hierarchical components. A linear-time parser can be built for any PEG, avoiding both the complexity and fickleness of LR parsers and the inefficiency of generalized CFG parsing. While PEGs provide a rich set of operators for constructing grammars, they are reducible to two minimal recognition schemas developed around 1970, TS/TDPL and gTS/GTDPL, which are here proven equivalent in effective recognition power.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A GLR-like Parsing Algorithm for Three-Valued Interpretations of Boolean Grammars with Strong Negation;Electronic Proceedings in Theoretical Computer Science;2024-09-11

2. Daedalus: Safer Document Parsing;Proceedings of the ACM on Programming Languages;2024-06-20

3. Robust Verification of PEG Parser Interpreters;2024 IEEE Security and Privacy Workshops (SPW);2024-05-23

4. Enhancing User-Centric Information Retrieval: A Unified Dual-DBMS Strategy for Integrating Full-Text and Knowledge Graph Searches;2024 Ivannikov Memorial Workshop (IVMEM);2024-05-17

5. Paguroidea: Fused Parser Generator with Transparent Semantic Actions;Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction;2024-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3