Countering Fragmentation in an Enterprise Storage System

Author:

Kesavan Ram1,Curtis-Maury Matthew2,Devadas Vinay2,Mishra Kesari2

Affiliation:

1. Google (work done while employed at NetApp, Inc.), CA, USA

2. NetApp, Inc, Durham, NC, USA

Abstract

As a file system ages, it can experience multiple forms of fragmentation. Fragmentation of the free space in the file system can lower write performance and subsequent read performance. Client operations as well as internal operations, such as deduplication, can fragment the layout of an individual file, which also impacts file read performance. File systems that allow sub-block granular addressing can gather intra-block fragmentation, which leads to wasted free space. Similarly, wasted space can also occur when a file system writes a collection of blocks out to object storage as a single large object, because the constituent blocks can become free at different times. The impact of fragmentation also depends on the underlying storage media. This article studies each form of fragmentation in the NetApp ® WAFL ® file system, and explains how the file system leverages a storage virtualization layer for defragmentation techniques that physically relocate blocks efficiently, including those in read-only snapshots. The article analyzes the effectiveness of these techniques at reducing fragmentation and improving overall performance across various storage media.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Transformation and Firm Performance in the Context of Sustainability: Mediating Effects Based on Behavioral Integration;Journal of Environmental and Public Health;2022-09-30

2. File fragmentation from the perspective of I/O control;Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems;2022-06-27

3. FragPicker;Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles CD-ROM;2021-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3