Generalized just-in-time trace compilation using a parallel task farm in a dynamic binary translator

Author:

Böhm Igor1,Edler von Koch Tobias J.K.1,Kyle Stephen C.1,Franke Björn1,Topham Nigel1

Affiliation:

1. University of Edinburgh, Edinburgh, United Kingdom

Abstract

Dynamic Binary Translation (DBT) is the key technology behind cross-platform virtualization and allows software compiled for one Instruction Set Architecture (ISA) to be executed on a processor supporting a different ISA. Under the hood, DBT is typically implemented using Just-In-Time (JIT) compilation of frequently executed program regions, also called traces . The main challenge is translating frequently executed program regions as fast as possible into highly efficient native code. As time for JIT compilation adds to the overall execution time, the JIT compiler is often decoupled and operates in a separate thread independent from the main simulation loop to reduce the overhead of JIT compilation. In this paper we present two innovative contributions. The first contribution is a generalized trace compilation approach that considers all frequently executed paths in a program for JIT compilation, as opposed to previous approaches where trace compilation is restricted to paths through loops. The second contribution reduces JIT compilation cost by compiling several hot traces in a concurrent task farm. Altogether we combine generalized light-weight tracing, large translation units, parallel JIT compilation and dynamic work scheduling to ensure timely and efficient processing of hot traces. We have evaluated our industry-strength, LLVM-based parallel DBT implementing the ARCompact ISA against three benchmark suites (EEMBC, BioPerf and SPEC CPU2006) and demonstrate speedups of up to 2.08 on a standard quad-core Intel Xeon machine. Across short- and long-running benchmarks our scheme is robust and never results in a slowdown. In fact, using four processors total execution time can be reduced by on average 11.5% over state-of-the-art decoupled, parallel (or asynchronous ) JIT compilation.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3