Affiliation:
1. Massachusetts Institute of Technology, Cambridge, MA, USA
Abstract
We present a new technique for verifying
commutativity conditions
, which are logical formulas that characterize when operations commute. Because our technique reasons with the abstract state of verified linked data structure implementations, it can verify commuting operations that produce semantically equivalent (but not necessarily identical) data structure states in different execution orders. We have used this technique to verify sound and complete commutativity conditions for all pairs of operations on a collection of linked data structure implementations, including data structures that export a set interface (ListSet and HashSet) as well as data structures that export a map interface (AssociationList, HashTable, and ArrayList). This effort involved the specification and verification of 765 commutativity conditions.
Many speculative parallel systems need to undo the effects of speculatively executed operations.
Inverse operations
, which undo these effects, are often more efficient than alternate approaches (such as saving and restoring data structure state). We present a new technique for verifying such inverse operations. We have specified and verified, for all of our linked data structure implementations, an inverse operation for every operation that changes the data structure state.
Together, the commutativity conditions and inverse operations provide a key resource that language designers, developers of program analysis systems, and implementors of software systems can draw on to build languages, program analyses, and systems with strong correctness guarantees.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献