Automatic CPU-GPU communication management and optimization

Author:

Jablin Thomas B.1,Prabhu Prakash1,Jablin James A.2,Johnson Nick P.1,Beard Stephen R.1,August David I.1

Affiliation:

1. Princeton University, Princeton, NJ, USA

2. Brown University, Providence, RI, USA

Abstract

The performance benefits of GPU parallelism can be enormous, but unlocking this performance potential is challenging. The applicability and performance of GPU parallelizations is limited by the complexities of CPU-GPU communication. To address these communications problems, this paper presents the first fully automatic system for managing and optimizing CPU-GPU communcation. This system, called the CPU-GPU Communication Manager (CGCM), consists of a run-time library and a set of compiler transformations that work together to manage and optimize CPU-GPU communication without depending on the strength of static compile-time analyses or on programmer-supplied annotations. CGCM eases manual GPU parallelizations and improves the applicability and performance of automatic GPU parallelizations. For 24 programs, CGCM-enabled automatic GPU parallelization yields a whole program geomean speedup of 5.36x over the best sequential CPU-only execution.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Representing Data Collections in an SSA Form;2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO);2024-03-02

2. Maximizing Parallelism and GPU Utilization For Direct GPU Compilation Through Ensemble Execution;Proceedings of the 52nd International Conference on Parallel Processing Workshops;2023-08-07

3. MemXCT: Design, Optimization, Scaling, and Reproducibility of X-Ray Tomography Imaging;IEEE Transactions on Parallel and Distributed Systems;2022-09-01

4. YOLOv2 acceleration using embedded GPU and FPGAs: pros, cons, and a hybrid method;Evolutionary Intelligence;2021-06-26

5. Comparative Study of the Execution Time of Parallel Heat Equation on CPU and GPU;Journal of Communications Software and Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3